4.3: Matrix Inversion

Definition 1. The inverse of an $n \times n$ matrix A is the $n \times n$ matrix A^{-1} such that

$$
A A^{-1}=A^{-1} A=I
$$

If the inverse of A exists, it is said to be invertible. Otherwise, it is said to be singular.

Example 1. Is $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ invertible?

Example 2. Compute the inverse of the following matrices.
(a) $P=\left[\begin{array}{cc}1 & -1 \\ -1 & -1\end{array}\right]$
(b) $Q=\left[\begin{array}{ccc}1 & 0 & 1 \\ 2 & -2 & -1 \\ 3 & 0 & 0\end{array}\right]$

Theorem 1. The inverse of a 2×2 matrix is

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

provided $a d-b c \neq 0$. The quantity $a d-b c$ is called the determinant of the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If the determinant is 0 , then the matrix is singular.

Example 3. Determine if the matrix $S=\left[\begin{array}{ccc}1 & 1 & 2 \\ -2 & 0 & 4 \\ 3 & 1 & -2\end{array}\right]$ is invertible by looking at the reduced row echelon form.

Example 4. Solve the system of equations

$$
2 x+z=1, \quad 2 x+y-z=1, \quad 3 x+y-z=1
$$

using matrix inversion.

